408 research outputs found

    Dimensional Analysis and the Time Required to Urinate

    Full text link
    According to the recently discovered 'Law of Urination', mammals, ranging in size from mice to elephants, take, on the average, 21s to urinate. We attempt to gain insights into the physical processes responsible for this uniformity using simple dimensional analysis. We assume that the biological apparatus for urination in mammals simply scales with linear size, and consider the scenarios where the driving force is gravity or elasticity, and where the response is dominated by inertia or viscosity. We ask how the time required for urination depends on the length scale, and find that for the time to be independent of body size, the dominant driving force must be elasticity, and the dominant response viscosity. Our note demonstrates that dimensional analysis can indeed readily give insights into complex physical and biological processes

    Kondo regime of the impurity spectral function and the current noise spectrum in the double impurity Anderson model

    Full text link
    The dissipaton equations of motion (DEOM) method is one of the most popular methods for simulating quantum impurity systems. In this article, we use DOEM theory to deal with the Kondo problem of the double quantum dots (DQDs) impurity system. We focus on the impurity spectral function and the total noise spectral function, this two function will be used to describe the Kondo effect of this system. The influence of the interaction, the hooping and the difference of the chemical potential between the two dots on the Kondo effect of the system is studied. We find that the interaction between the two dots can influence the Kondo effect of the system a lot

    The quantum solvation, adiabatic versus nonadiabatic, and Markovian versus non-Markovian nature of electron transfer rate processes

    Full text link
    In this work, we revisit the electron transfer rate theory, with particular interests in the distinct quantum solvation effect, and the characterizations of adiabatic/nonadiabatic and Markovian/non-Markovian rate processes. We first present a full account for the quantum solvation effect on the electron transfer in Debye solvents, addressed previously in J. Theore. & Comput. Chem. {\bf 5}, 685 (2006). Distinct reaction mechanisms, including the quantum solvation-induced transitions from barrier-crossing to tunneling, and from barrierless to quantum barrier-crossing rate processes, are shown in the fast modulation or low viscosity regime. This regime is also found in favor of nonadiabatic rate processes. We further propose to use Kubo's motional narrowing line shape function to describe the Markovian character of the reaction. It is found that a non-Markovian rate process is most likely to occur in a symmetric system in the fast modulation regime, where the electron transfer is dominant by tunneling due to the Fermi resonance.Comment: 13 pages, 10 figures, submitted to J. Phys. Chem.

    GIS and urban data science

    Get PDF
    With the emergence of new forms of geospatial/urban big data and advanced spatial analytics and machine learning methods, new patterns and phenomena can be explored and discovered in our cities and societies. In this special issue, we presented an overview of nine studies to understand how to use urban data science and GIS in healthcare services, hospitality and safety, transportation and mobility, economy, urban planning, higher education, and natural disasters, spreading across developed countries in North America and Europe, as well as Global South areas in Asia and the Middle East. The embrace of diverse geo-computational methods in this special issue brings forward an outlook to future GIS and Urban Data Science towards more advanced computational capability, global vision and urban-focused research

    Commande non-linéaire et analyse de stabilité de réseaux multi-terminaux haute tension à courant continu

    Get PDF
    This dissertation was devoted to the study of multi-terminal high voltage direct current (MTDC) networks. The main contributions were in the field of nonlinear automatic control, applied to power systems, power electronics and renewable energy sources. The research work was started with the intention of filling some gaps between the theory and the practice, in particular: 1) to investigate various control approaches for the purpose of improving the performance of MTDC systems; 2) to establish connections between existing empirical control design and theoretical analysis; 3) to improve the understanding of the multi-time-scale behavior of MTDC systems characterized by the presence of slow and fast transients in response to external disturbances. As a consequence, this thesis work can be put into three areas, namely nonlinear control design of MTDC systems, analysis of MTDC system's dynamic behaviors and application of MTDC systems for frequency control of AC systems.Cette thèse a été consacrée à l'étude des réseaux multi-terminaux haute tension à courant continu (MTDC). Les principales contributions étaient dans le domaine du contrôle automatique non linéaire, appliquées aux systèmes électriques, électronique de puissance et les sources d'énergie renouvelables. Le travail de recherche a été lancé avec l'intention de combler certaines lacunes entre la théorie et la pratique, en particulier: 1) d'enquêter sur diverses approches de contrôle pour le but d'améliorer la performance des systèmes MTDC; 2) d'établir des connexions entre la conception du contrôle empiriques existantes et analyse théorique; 3) d'améliorer la compréhension du comportement multi-échelle de temps des systèmes MTDC caractérisés par la présence de transitoires lents et rapides en réponse aux perturbations externes. En conséquence, ce travail de thèse peut être mis en trois domaines, à savoir la conception non linéaire de commande de systèmes MTDC, analyse des comportements dynamiques de système MTDC et l'application de systèmes MTDC pour le contrôle de fréquence des systèmes de climatisation

    Investigating the mechanism by which thalamocortical projections reach the cerebral cortex

    Get PDF
    This thesis provides insights into the mechanism by which thalamocortical axons (TCAs) approach the cortex from their origin in the thalamus. Previous studies suggested that the reciprocal projections from the prethalamus and the ventral telencephalon guide TCAs to descend through the prethalamus and cross the diencephalic-telencephalic boundary (DTB), after which TCAs navigate through permissive corridor cells in the ventral telencephalon and cross the pallial-subpallial boundary (PSPB) before reaching their final targets in the cortex. The ‘Handshake Hypothesis’ proposed that pioneer axons from cortical preplate neurons guide TCAs into corresponding cortical areas. However, there is a lack of convincing evidence on whether TCAs need any guidance to cross the PSPB. In the current study, Adenomatous polyposis (Apc) gene is conditionally deleted from the cortex, by using Emx1Cre-APCloxP recombination technology. Apc is widely expressed in the nervous system including the cortical plate of the cortex and regulates axonal growth and neuronal differentiation. Deleting Apc may block neurite extension and/or affect the formation of attractive or repulsive cues in the cortex. By using DiI tracing as well as L1 immunohistochemistry techniques, I showed that in the Apc mutants cortical axons are absent and that TCAs initially navigate into the ventral telencephalon normally but fail to complete their journey into the cortex. They stop as they approach the PSPB, although the PSPB doesn’t seem to be directly affected by the mutation of Apc in the cortex. Additionally, Ig-Nrg1 (Neuregulin-1), the secreted protein that was suggested to play long-range roles in attracting TCAs towards the cortex, is present in the Apc mutant. This implies that Ig-Nrg1 is not sufficient for guiding TCAs into the cortex, and that additional guidance factors are needed. Moreover, my in vitro explant culture experiments show that the mutant cortex neither repel nor inhibit thalamic axonal outgrowth, indicating that the failure of TCAs in reaching the cortex is not due to the change of repulsive cues secreted by the mutant cortex. It rather indicates that the guidance factors for TCAs are likely to function through cell-cell contact mediated mechanisms. The Apc mutant cortex lacks these guidance factors, which might be the cortical axons. In conclusion, my data reveal a choice point for TCAs at the PSPB. Guidance factors from the cortex are needed for TCAs to cross the PSPB, which are absent in the Apc mutant. TCAs may need the direct contact with cortical axons and use them as an axonal scaffold to navigate into the cerebral cortex

    Robust output regulation of linear system subject to modeled and unmodeled uncertainty

    Full text link
    In this paper, a novel robust output regulation control framework is proposed for the system subject to noise, modeled disturbance and unmodeled disturbance to seek tracking performance and robustness simultaneously. The output regulation scheme is utilized in the framework to track the reference in the presence of modeled disturbance, and the effect of unmodeled disturbance is reduced by an H\mathcal{H}_\infty compensator. The Kalman filter can be also introduced in the stabilization loop to deal with the white noise. Furthermore, the tracking error in the presence/absence of noise and disturbance is estimated. The effectiveness and performance of our proposed control framework is verified in the numerical example by applying in the Furuta Inverted Pendulum system
    corecore